Electromagnetic simulation tools accelerate design of microwave amplifiers: Page 3 of 3

December 10, 2012 //By Jean-Pierre Joosting
An automated simulation-based design cycle has become a fundamental part of the success of one of today's leading designers of travelling wave tube (TWT) microwave amplifiers.
including ones for simulating charged particle beams, for static and time-varying magnetic field analysis, and for modelling thermal effects. The accuracy of the finite element analysis design software has been proven time and again for the company, by comparing actual measured results from the finished real-world products with the predictions obtained from the simulation models.

"The Opera-based tools that we have developed substantially shorten design cycles, giving us a lot of time and freedom to find the best solution for any particular application," says David Dyson, Chief Engineer of TMD Technologies' Tubes Division.

Travelling wave tubes (TWTs) are vacuum devices that amplify by producing an electron beam and coupling it with a microwave frequency electromagnetic signal. Synchronization is achieved by means of a 'slow wave structure' which employs a geometry such as a helix, ring bar or ring loop to precisely delay the microwave signal by forcing it to meander back and forth.


Design category: