The future of wearable medical devices: Page 4 of 5

June 20, 2016 //By Neil Oliver
The technological convergence of portable consumer electronics such as smartphones, smart watches and fitness devices with that of professional medical equipment such as pulse oximetry, ECG and Glucose meters as well as ultrasound scanners and kidney diagnostics, is increasingly blurring the lines between equipment designed for practitioners and devices used by consumers.

Many OEMs have already taken action to protect their intellectual property rights (IPR) against fake, or copycat, batteries by introducing security features such as invisible inks and holograms. Here at Accutronics we've incorporated an advanced software-security algorithm (SHA-1) into our batteries that ensures only authorised batteries are used in medical devices. The host device rejects fake batteries when detected and takes appropriate action, as defined by the vendor, such as failing to power up or notifying the user.

Taking such measures however, is only a reactive response. Although the medical industry is one of the most regulated industries in the world, it has struggled to keep pace with the advent of wearable medical devices. One of the biggest reasons for this is that the very definition of a medical device is becoming blurred.

If your smartphone accompanied by a wearable device is able to measure, diagnose and recommend treatment on any given health condition, then should that be regulated as a piece of IT equipment, under the IEC 60950-1 standard or should it be regulated as a fully blown medical device under the IEC60601-1 standard? These medical standards form the requirement for the commercialisation of an electrical medical equipment in many countries.

It was this ongoing ambiguity that led Apple to consult with the US Food and Drug Administration (FDA) on the use of sensors in its devices, which may ultimately lead to regulatory review by the FDA. Although information-only apps are exempt, any apps taking measurements, for example a glucometer that takes readings, would be considered diagnostic in nature. This conversation led Apple to release Healthkit, its software development kit (SDK) for developers.

Likewise, in Europe, the European parliament has set out directives on the classification of medical and in-vitro medical devices to include a broader range of products including non-corrective contact lenses, aesthetic implants and software used in devices. The regulations will also be more selective in awarding CE markings to high risk devices, which must undergo further clinical trials to assess risk.

Design category: