Keeping ahead of the interference challenges

September 06, 2016 //By Dean Miles, Tektronix
Keeping ahead of the interference challenges
In our highly wireless world, interference is an unwelcome addition to the equation that results in noise, interrupts cell phone calls and just generally messes up communication. In the case of cellular networks, interference is actually part of the network. While more networks today have built-in features to detect interference, these tools often lack context as they are geared towards only a few types of signals and may only be able to measure the impact of the problem over a single channel.

A spectrum analyzer is the trusted tool that engineers use to measure and identify sources of interference. There are many types of spectrum analyzers on the market, but many people opt for small battery-powered spectrum analyzer models because they need to be able to move around freely and correlate data from multiple locations.

When on the hunt for interference the first challenge is to determine if it’s even possible to measure the interfering signal. Typically, a victim receiver, which is the first place to look, is easy to identify. The challenge is that radio receivers are able to detect very small signals. Therefore, the spectrum analyzer must be set up to closely mimic the sensitivity of the victim receiver to “see” what the receiver is “seeing.” For example, an average LTE receiver has a sensitivity in the area of -120 dBm. This means that any RF pollution on the receiver channel that is greater than -120 dBm can affect the operation of the receiver.

There are two controls in the spectrum analyzer to adjust sensitivity: reference level (RefLvl) and resolution bandwidth (RBW). The challenge is that when taking measurements “over the air” (OTA), the reference level needs to be kept fairly high (-30dBm), so that the spectrum analyzer doesn’t become overloaded with all of the RF energy being measured.

In most spectrum analyzers the RBW control is set automatically based on the frequency span that the user has configured. In OTA measurements RBW values should be reduced in order to see small signals that could be affecting the victim receiver. This combination results in a very slow sweep rate for most battery-powered spectrum analyzers which means that it’s almost impossible to see intermittent low-level transient signals that are causing the interference.

Design category: 

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.