Phased array beamforming ICs simplify antenna design

September 27, 2020 //By Keith Benson, Analog Devices
Phased array beamforming ICs simplify antenna design
This article will briefly describe existing antenna solutions and where electrically steered antennas have advantages. It will then go into how semiconductor advancements are helping to achieve the goals of improving SWaP-C for electrically steered antennas, followed by examples of ADI technology that make this possible.

Wireless communications and radar systems are facing increasing demands on antenna architectures to improve performance. Many new applications will only be possible with antennas that consume less power in a lower profile than traditional mechanically steered dish antennas. These requirements are in addition to the desire to reposition quickly to a new threat or user, transmit multiple data streams, and operate over longer lifetimes at aggressive cost targets. In some applications, there is a need to null an incoming blocking signal and have a low probability of intercept. These challenges are met with phased array-based antenna designs that are sweeping the industry. Past disadvantages of phased array antenna are being addressed with advanced semiconductor technology to ultimately reduce the size, weight, and power of these solutions. This article will briefly describe existing antenna solutions and where electrically steered antennas have advantages. It will then go into how semiconductor advancements are helping to achieve the goals of improving SWaP-C for electrically steered antennas, followed by examples of ADI technology that make this possible.

 

Introduction

Wireless electronic systems relying on antennas to send and receive signals have been operating for over 100 years. They continue to be improved as the need for accuracy, efficiency, and more advanced metrics become increasingly important. In past years, a dish antenna has been widely used to transmit (Tx) and receive (Rx) signals where directivity is important and many of those systems work well at a relatively low cost after years of optimization. These dish antennas having a mechanical arm to rotate the direction of radiation does have some drawbacks, which include being slow to steer, physically large, having poorer long-term reliability, and having only one desired radiation pattern or data stream. As a result, engineers have pushed toward advanced phased array antenna technology to improve these features and add new functionality. Phased array antennas are electrically steered and offer numerous benefits compared to traditional mechanically steered antenna such as low profile/less volume, improved long-term reliability, fast steering, and multiple beams. With these benefits, the industry is seeing adoption in military applications, satellite communications (satcom), and 5G telecommunications including connected automobiles.

Design category: 

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.