2D materials convert WiFi energy to electricity

February 01, 2019 //By Nick Flaherty
2D materials convert WiFi energy to electricity
Researchers in Spain and the US have used a 2D material for a flexible device that can convert energy from Wi-Fi signals into electricity that could power electronics.

The rectenna design developed at the Technical University of Madrid and MIT uses a flexible radio-frequency (RF) antenna that captures the WiFI signals as AC waveforms. This is connected to anAC-DC converter that uses molybdenum disulfide (MoS2), which at three atoms thick is one of the thinnest semiconductors in the world. When it is exposed to certain chemicals, the material’s atoms rearrange in a way that acts like a switch, forcing a phase transition from a semiconductor to a metallic material, creating a Schottky diode.

A key advantageof this thin layer is that the device can be built on a flexible substrate in a roll-to-roll process to cover very large areas.

“What if we could develop electronic systems that we wrap around a bridge or cover an entire highway, or the walls of our office and bring electronic intelligence to everything around us? How do you provide energy for those electronics?” said Tomás Palacios, a professor in the Department of Electrical Engineering and Computer Science and director of the MIT/MTL Centre for Graphene Devices and 2D Systems in the Microsystems Technology Laboratories. “We have come up with a new way to power the electronics systems of the future — by harvesting Wi-Fi energy in a way that’s easily integrated in large areas — to bring intelligence to every object around us.”

The device can produce about 40 microwatts of power when exposed to the typical power levels of Wi-Fi signals (around 150 microwatts), a conversion efficiency around 30 per cent. This compares to 50 to 60 per cent silicon or gallium arsenide converters.


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.