Electronic skin transmits health metrics from the body to a smartphone

August 22, 2017 //By Jean-Pierre Joosting
Electronic skin transmits health metrics from the body to a smartphone
A soft, stick-on patch, that is an electronic skin microsystem, tracks heart rate, respiration, muscle movement and other health data, and wirelessly transmits it to a smartphone.

The microsystem was developed by an international team led by Kyung-In Jang, a professor of robotics engineering at South Korea's Daegu Gyeongbuk Institute of Science and Technology, and John A. Rogers, the director of Northwestern University's Center for Bio-Integrated Electronics.

Offering several improvements over existing trackers, the electronic skin provides greater flexibility, smaller size, and the ability to stick the self-adhesive patch – which is a very soft silicone about four centimeters (1.5 inches) in diameter – just about anywhere on the body.

The patch contains about 50 components connected by a network of 250 tiny wire coils embedded in soft protective silicone that enables it to conform to body, unlike other hard monitors. Data on movement and respiration, as well as electrical activity in the heart, muscles, eyes and brain is transmitted wirelessly to a smartphone application.

Unlike flat sensors, the tiny wire coils in the patch are three-dimensional, which maximizes flexibility. The coils can stretch and contract like a spring without breaking. Further, the coils and sensor components are also configured in an unusual spider web pattern that ensures "uniform and extreme levels of stretchability and bendability in any direction." It also enables tighter packing of components, minimizing size.

The key to creating this novel microsystem is stretching the elastic silicone base while the tiny wire arcs, made of gold, chromium and phosphate, are laid flat onto it. The arcs are firmly connected to the base only at one end of each arc. When the base is allowed to contract, the arcs pop up, forming three-dimensional coils.

A research team led by Professor Kyung-In Jang of Robotics Engineering collects, analyzes, and diagnoses bio-signals wirelessly transmitted to mobile application from the soft electronic skin. Image courtesy of DGIST.

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.