Printed electronics on skin, paper with water-based inks

October 07, 2019 //By Julien Happich
Printed electronics on skin, paper with water-based inks
Using a purpose-built printer nozzle and water-based inks, electrical engineers at Duke University have demonstrated that electronically functional designs such as electrodes and transistors could be printed through an aerosol jet, without any post-processing.

This means that printed electronics can use safe water-based inks that could be applied on delicate surfaces such as human skin or fruits to design electronic tattoos or sensing tags without incurring any damage.

"When people hear the term 'printed electronics,' the expectation is that a person loads a substrate and the designs for an electronic circuit into a printer and, some reasonable time later, removes a fully functional electronic circuit," explains Aaron Franklin, the James L. and Elizabeth M. Vincent Associate Professor of Electrical and Computer Engineering at Duke.

"Over the years there have been a slew of research papers promising these kinds of 'fully printed electronics,' but the reality is that the process actually involves taking the sample out multiple times to bake it, wash it or spin-coat materials onto it," Franklin adds. "Ours is the first where the reality matches the public perception."

"For direct or additive printing to ever really be useful, you're going to need to be able to print the entirety of whatever you're printing in one step," argues Franklin. "Some of the more exotic applications include intimately connected electronic tattoos that could be used for biological tagging or unique detection mechanisms, rapid prototyping for on-the-fly custom electronics, and paper-based diagnostics that could be integrated readily into customized bandages."


Two electronically active leads directly printed along
the underside of Duke graduate student Nick Williams'
pinky successfully light up an LED when a voltage
is applied. Credit: Nick Williams, Duke University.


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.